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Forecasts of species range shifts under climate change are fraught with uncertainties and ensemble forecasting may
provide a framework to deal with such uncertainties. Here, a novel approach to partition the variance among modeled
attributes, such as richness or turnover, and map sources of uncertainty in ensembles of forecasts is presented. We model
the distributions of 3837 New World birds and project them into 2080. We then quantify and map the relative
contribution of different sources of uncertainty from alternative methods for niche modeling, general circulation models
(AOGCM), and emission scenarios. The greatest source of uncertainty in forecasts of species range shifts arises from using
alternative methods for niche modeling, followed by AOGCM, and their interaction. Our results concur with previous
studies that discovered that projections from alternative models can be extremely varied, but we provide a new analytical
framework to examine uncertainties in models by quantifying their importance and mapping their patterns.

Environmental niche models, or species distribution models
(SDM), are frequently used to forecast shifts in species
geographic distributions under climate change (Peterson
et al. 2002, Thomas et al. 2004a, Thuiller et al. 2005a, b,
Araújo et al. 2006, Lawler et al. 2009). When species ranges
closely match their potential niche, associations between
species ranges and environmental factors can be reliably
used to estimate the ecological requirements of species
(Araújo and Guisan 2006, Soberón 2007). Estimated
associations can then be utilized to forecast species range
shifts and related changes in biodiversity patterns under
climate change scenarios.

It is widely acknowledged that SDMs provide a
simplified representation of the processes governing the
geographic distributions of species (Pearson and Dawson
2003, Guisan and Thuiller 2005). Actually, multiple
ecological and evolutionary processes, operating at different
spatial and temporal scales, are expected to determine
contemporary distributions of most species (Araújo et al.
2008, Pearman et al. 2008), and several of these processes
are poorly represented in the models (Guisan and Thuiller
2005). In addition to ecological uncertainties, there are
several sources of methodological uncertainty that have
been discussed in a number of recent studies (Thuiller et al.
2004, Araújo et al. 2005a, b, Pearson et al. 2006, 2007,

Marmion et al. 2009). Nevertheless, and despite computa-
tional and methodological advances, the decision as to
which model to use is often ad hoc (Araújo and New 2007),
and there is little agreement regarding the relative perfor-
mance of alternative niche-based techniques and overall
modeling strategies for forecasting species distributional
changes under climate change (Araújo and Rahbek 2006,
Dormann 2007, Peterson et al. 2007, Phillips 2008).

Methodological uncertainties may arise because of
differences in data sources and statistical methods used for
niche and climate modeling (Heikkinen et al. 2006). If it is
not possible to clearly establish which models are more
adequate to a particular problem, a potential solution to
take inter-model variability into account is to fit multiple
models, or ensembles, and combine them into some sort of
consensus forecast (for reviews see Araújo and New 2007,
Leutbecher and Palmer 2008). Recent studies suggested that
improvements in the forecasts could be achieved if
ensembles were obtained and the results were appropriately
analyzed (Araújo et al. 2005a, 2006, Marmion et al. 2009,
Roura-Pascual et al. 2009). For instance, some widely used
methods for niche modeling, such as GARP, Neural
Networks, and Random Forests do generate multiple
projections and combine them into a single consensus
solution (Lawler et al. 2009, O’Hanley 2009, see also
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Table 1 in Araújo and New 2007). The new version of the
BIOMOD software allows different methods to be fitted
and projections to be compared and combined (Thuiller
et al. 2009).

However, existing approaches sparsely sample all possi-
ble uncertainties from models (Araújo and New 2007). For
example, it is difficult to fully explore uncertainties arising
from data uncertainty or from the large numbers ensembles
of AOGCM (Atmosphere-Ocean General Circulation
Models) that are currently being generated. There is indeed
a possibility that some sources of methodological and
technological uncertainty, such as climate models and
emission scenarios, might be more important than how
the parameters of particular method are estimated (Thomas
et al. 2004b, Berthelot et al. 2005, Stainforth et al. 2005).
Techniques for handling and combining large ensembles of
forecasts are also in their infancy and consensus projections
may hide variability arising from disparate sources of
uncertainty with existing tools being unable to successfully
disentangle them. Thus, a more detailed analysis of the
sources of uncertainties and their patterns is important to
improve modeling strategies and to define over which
sources an ensemble is necessary.

Here, we develop a new quantitative approach to analyze
uncertainties in large ensembles of forecasts and disentangle
the contribution of individual sources of variation entering
the models. This approach is based on a spatially-explicit
decomposition of total sum of squares of the ensemble-
forecasted values of faunal turnover. Thus, our approach
provides maps of uncertainty and allows an investigation of
the regions more affected by particular sources of un-
certainty. Buisson et al. (2009) proposed an alternative
approach to partition the variance in ensembles of forecasts
of species distributional changes that also allows an
exploration of the geographic components of uncertainty.
We applied our approach to understand the uncertainties in
forecasts of species turnover maps of New World birds
under climate change. Our study provides a comprehensive
ensemble forecasting experiment to assess the relative
contribution of seven species distribution models, five
climate models, and two emission scenarios. Although
other sources of uncertainty exist, our approach can be
quickly expanded in the future to incorporate other sources
of variation and thus it provides a fine perspective that
enables new insights on how to better evaluate shifts in

biodiversity patterns and what are the greatest challenges at
different levels of the modeling process.

Material and methods

Data

Data on the extent of occurrence (range filling) for 3837
species of the New World birds were downloaded from
the NatureServe /<www.natureserve.org/getData/birdMaps.
jsp/> and resampled to a grid of 18�18 latitude/longitude.
A similar approach for deriving species presence and
absence maps from extent of occurrence data was adopted
by Lawler et al. (2009). Although we acknowledge that
this is not the most commonly used approach to model
species distributions (which is usually based on more
detailed data of species occurrences and fine scale envi-
ronmental data), this allows a first understanding of
continental patterns in species turnover based on a very
large number of species.

Climatic data for species distribution modeling were
derived from five coupled Atmosphere-Ocean General
Circulation Models (AOGCMs), including CCSM3,
CSIRO-Mk3.0, UKMO-HadCM3, ECHAM5/MPI-OM
and MIROC. Although other AOGCMs are available, this
selection covers a wide range of different predictions and
was defined to maximize the different degree of predicted
climate warming. The AOGCMs used here have different
equilibrium climate sensitivity values ranging from 2.78C to
4.38C. Equilibrium climate sensibility is the annual mean
surface air temperature change experienced by the climate
system after it has attained a new equilibrium in response to
a doubling of CO2 concentration, and are within the range
of all AOGCMs available from IPCC. These models also
tried to encompass projections with different spatial
resolutions, ranging from 1.18�1.18 to 3.758�3.758
latitude/longitude in the original set. Data were extracted
from the World Climate Research Program’s (WCRP)
Coupled Model Intercomparison Project phase 3 (CMIP3)
multi-model dataset (Meehl et al. 2007).

Outputs for each model were obtained for two emission
scenarios (A1 and B1) that are available for all AOGCMs
selected above. In general, scenarios A1 and B1 can be
roughly classified as ‘‘pessimistic’’ and ‘‘optimistic’’, respec-
tively, according to the CO2 emissions. The A1 storyline
and scenario family assumes a future of very rapid economic

Table 1. Median proportions of the total sum of squares from the three-way ANOVA performed for each grid cell covering the New World,
evaluating the relative contributions of method for niche modeling, AOGCM and emission scenario to the variability in forecasting species
turnover. Minimum and maximum values in the maps are also given (see also Fig. 3). Geographical patterns in each variance component are
estimated by Moran’s I coefficient in the first distance class and by correlogram intercept (in km).

Source SS(%) Geographical patterns

Median Min-max Moran’s I* Correlogram intercept (km)

Method 66.10 3.8�94.7 0.489 4014
AOGCM 13.80 1.2�47.4 0.399 3088
Scenario 0.01 0.0�20.0 0.155 643
Method�AOGCM 11.80 1.3�40.9 0.259 643
Method�Scenario 0.70 0.0�15.7 0.219 1646
AOGCM�Scenario 3.10 0.0�34.3 0.242 1646
Third-order interaction 2.30 0.2�15.2 0.199 643

*All Moran’s I significant at pB0.01.
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growth and rapid introduction of more efficient technolo-
gies, but low population growth. A major underlying theme
is a substantial reduction in regional differences in per
capita income and, more specifically, the A1 scenario used
here assumes a balanced mix of technologies and supply
sources, with technology improvements and resource
assumptions, including that no single energy source is
overly dominant (IPCC 2000). The other scenario used
herein (B1), also starts from the same low population
growth rate, but it differs from A1 in assuming rapid
changes in economic structures toward a service and
information economy, with reductions in material intensity,
and the introduction of clean and resource-efficient
technologies. The emphasis is on global solutions to
economic, social, and environmental sustainability, includ-
ing improved equity, but without additional climate
initiatives (IPCC 2000).

For each one of the AOGCMs and emission scenarios,
four variables were obtained for both present time (base-
line used to calibrate the models, the average values from
1970 to 1999) and future (estimated 2070�2099 interval,
2080 for simplicity hereafter). Variables used were mean
annual rainfall and variability, average temperature of the
warmest and coldest months. Rather than only using
all these variables simultaneously to predict the geogra-
phic ranges of all species, the 15 combinations (2p � 1,
where p�4) of these four variables (Fig. 1) were used
in independent models, accounting them for eventual
differences in ecological processes driving geographic
distributions of species across the New World. These
variables encompass the major hypotheses which

are often raised to explain patterns of species richness at
global scale (Hawkins et al. 2003).

Modeling species distributions

For each species, data were randomly divided into calibra-
tion and validation sets comprising 75 and 25% of the
species’ range, respectively, and the procedure was repeated
50 times, maintaining the observed prevalence of species in
each partition (i.e. for presence only methods, 75% of the
cells within the species’ range, randomly defined, were used
for modeling, whereas for presence�absence methods the
analyses were conducted using a random sample of 75% of
cells both inside and outside species’ range). Beyond
creating independent � or at least partially independent �
sets for model calibration and validation, partition also
allows to take data uncertainty into account, especially con-
sidering that range filling maps tend to have larger
commission errors (Hawkins et al. 2008). Thus, each
calibration dataset was used to project species distributions,
according to seven SDMs described below (which were
estimated with the 15 combinations of four environmental
variables) on each combination of AOGCM and emission
scenario previously defined. For species with range size
�10 cells (12% of species), rather than performing a cross-
validation 50 times, each of the n cells was deleted once and
analyses were repeated n times (roughly equivalent to a
Jackknife procedure � Pearson et al. 2007).

We fitted seven species distribution models (SDMs) and
projected species potential distributions for baseline and

Figure 1. A schematic representation of the analytical framework used to evaluate spatial patterns of uncertainty in ensemble forecasting.
Forecasting is generated using 15 combinations of the four bioclimatic variables, based on 50 random replications of calibration/
validation datasets, for each method for niche modeling. Projections are based on the five AOGCMs for the two emission scenarios (A1
and B1). Then a three-way ANOVA is applied to each cell and the proportion of the total sum of squares accounted by each source can be
mapped. A PCA can be used to evaluate the similarity among the ensemble-based vectors.
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future climates (Fig. 1). The modeling methods used
included a range of SDMs that are both conceptually
and statistically different (Segurado and Araújo 2004, Elith
et al. 2006, Tsoar et al. 2007, Philips and Dudı́k
2008), such as simple surface range envelope models like
BIOCLIM (Busby 1991), and Euclidian and Maha-
lanobis (EUC and MAHAL) distances (Farber and
Kadmon 2003). We also fitted Generalized Linear Models
(GLM) (McCullagh and Nelder 1989) and more com-
plex machine learning approaches such as Random Forest
(RF) (Breiman 2001), Genetic Algorithm for Rule Set
Production (GARP) (Stockwell and Noble 1992), and
Maximum Entropy (MAXENT) (Phillips et al. 2006,
Phillips and Dudı́k 2008). We developed new computer
software � BioEnsembles � in which all these methods
were implemented. This software was designed to optimize
and take advantage of high-speed parallel processing,
both within (multi-processors computers) and between
(grid architecture) computers.

Notice that the fitting and projection of alternative
models using data partition and the 15 combinations of
variables are used here to explore uncertainties from the
initial conditions and model parameterization (sensu Araújo
and New 2007). However, because of the large number of
maps for each species, both the data-splitting procedures
and variable selection were not included into the current
analysis of sources of uncertainty. Rather, maps resulting
from reshuffling data and variables were summed to
generate the vector of ensemble frequencies of occurrence
of the species for each of the combinations of SDM,
AOGCM and emission scenarios (see below).

The True Skill Statistics (TSS) (Allouche et al. 2006),
varying between �1 and 1, was used as a fit statistic. It
was calculated for each model based on the confusion
matrix expressing matches and mismatches of observed
and predicted occurrences in the validation data set. This
matrix was computed after using ROC curves to convert
continuous predictions into presence-absence. Models with
TSS smaller than zero were discarded.

Also, it was not possible to fit all methods for all species
using different combinations of variables (for example, lack
of convergence in GLM or impossibility of inverting the
covariance matrix when computing Mahalanobis distances).
Most methods cannot deal with species occurring in a single
cell (ca 1.2% of the species). Because of these restrictions,
not all 3837 species were used for all SDM methods and
AOGCMs (Supplementary material Table S1, Fig. S1).
Thus, for each method and AOGCM, up to 750 models
(50 dataset partitions modeled using 15 combinations of
variables) were generated for each species. Finally, this
combination of models generates an ensemble-based fre-
quency of species distributions in the future and species are
considered to occur in a given cell if at least 50% of the
models predict its occurrence there (i.e. a majority
consensus rule) (Araújo et al. 2005a, 2006).

Rather than evaluating each species’ ensemble distribu-
tion independently, we calculated species turnover for each
combination of SDM, AOGCM, and scenario, which was
based on the number of potential species gained (G) or lost
(L) within each cell and given by (G�L)/(S�G) (Thuiller
2004). Notice that species turnover was calculated by
comparing potential ranges as modeled in 2070�2099 and

the modeled ranges on baseline period, rather than observed
ranges.

Evaluating the consistency between projections

Species turnover maps (7 SDM�5 AOGCMs�2 emis-
sion scenarios, each one based on a maximum number of
750 models for each species) were averaged across each cell,
generating a turnover consensus map, as well as standard
deviations and coefficients of variation that allow mapping
where uncertainty in projections is larger.

To evaluate the origins of variability around this
consensus, we submitted the correlation matrix among the
70 projections to a Principal Component Analysis (PCA),
as suggested by previous authors (Thuiller 2004, Araújo
et al. 2005a, 2006). This allows evaluating the similarity of
the projections (values of turnover as predicted by combi-
nations of SDM, AOGCM and emission scenarios) by the
loadings (i.e. the Pearson’s correlation coefficients between
predicted values and the scores) of the interpretable axes,
which were defined by the broken-stick criterion (Legendre
and Legendre 1998).

The loadings of the PCA can be used to express the
relative position (similarity) of the maps from different
SDM, AOGCMs and scenarios, whereas the PCA scores are
the main directions of covariation among the maps
throughout the projections variability. If the first principal
component has a large relative eigenvalue, it tends to be
highly correlated with the average consensus map and can
be used as a consensus map as well (Araújo et al. 2005a,
2006, Marmion et al. 2009).

Mapping the sources of variation around the
consensus solution

Although it is trivial to map the mean (consensus) turnover
in each cell based on maps generated by different SDM,
AOGCMs, and emission scenarios, as well as their variance
or coefficient of variation, it is much more difficult to
understand the main sources of variation around the
consensus. The PCA described above can be used to
evaluate similarity of maps, but it does not necessarily
allow a formal partition of the sources contributing to the
differences among the maps. To address this problem we
performed a three-way Analysis of Variance (ANOVA)
without replication (Sokal and Rohlf 1995, Legendre and
Legendre 1998) for each cell, using species turnover as the
response variable and SDM, AOGCM and emission
scenarios as factors. We then obtained the sum of squares
which can be attributed to each of these sources and their
interaction (SDM�AOGCM, SDM�emission scenario,
AOGCM�emission scenario and SDM�AOGCM�
emission scenario). Notice that because this is a three-way
ANOVA without replication, it is impossible to disentangle
residual variance (i.e. part of variation not explained by
SDM, AOGCM and emission scenario) and variance
determined by the full (triple) interaction among these
three sources. Because the levels in each factor (or source of
variation) are a ‘‘sample’’ of possibilities (i.e. other
AOGCMs and SDM), we could think in all these factors
as random effects, although as pointed out above they were
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selected to cover most of the range of variation within each
factor.

We estimated the variance components as the simple
proportions of the sum of squares attributable to the three
sources (and their interaction) in respect to the total sum of
squares. As we performed the analyses for each cell in the
grid covering the New World (Fig. 1), it was possible to
map each variance component and, in this way, identify
regions of low and high uncertainty and the main sources
accounting for this uncertainty. Notice that ANOVA was
applied here to a turnover metrics, which varies between 0
and 1, so that violations in the assumptions of normality are
not unlike. This may be not a problem when dealing with
other metrics, but it is difficult to check for this problem in
every grid cell. However, we believe that our results are
robust to these problems and performing a square root/
arcsin transformation of turnovers prior to the ANOVA
(which are likely to improve the models) did not qualita-
tively affect the patterns in maps and the relative magnitude
of variance components. The correlation between variance
components from transformed and untransformed turnover
metrics was always higher than 0.95 (median magnitudes all
the same up to the second decimal place).

We explicitly quantified the spatial patterns in each
variance components using correlograms, based on Moran’s
I spatial autocorrelation coefficients calculated for 10
geographic distance classes (Legendre and Legendre
1998). Magnitude of spatial pattern was established by
Moran’s I in the first distance class and by the correlograms’
X-intercept (i.e. the distance at which autocorrelation
becomes negative). Spatial analyses were performed in
SAM (Spatial Analysis in Macroecology) software, freely
available at /<www.ecoevol.ufg.br/sam/> (Rangel et al.
2006).

Results

A consensus map of mean species turnover across the 70
ensembled combinations of SDM, AOGCM and emission
scenario (Fig. 2A), shows relatively high turnover (up to
56%) in northern parts of North America, in the Amazon
and across the Andean region in South America, in Central
America, throughout Mexico and in southeastern US.
However, there was a high variation among projections,
mainly in north and northwestern North America and parts
of the Amazon, with coefficients of variation going up to
90% (Fig. 2B).

The first axis of the principal component analysis
applied to the correlation matrix among the 70 turnover
maps explained only 29.3% of the correlation structure,
whereas the second principal component explained 23.5%
of the variation. The first five axes selected by a broken-stick
criterion explained 67.5% of the variation among turnover
maps, indicating thus a marked level of heterogeneity
among them. Spatial patterns and magnitude of turnover
were quite different among combinations of SDM,
AOGCM and emission scenarios (Supplementary material
Table S2). Thus, it is difficult to disentangle by a simple
visual inspection of the loading structure which sources of
variation contributed more to the variability in the

ensemble of forecasts (although this may be useful for a
posteriori comparisons � see below).

The three-way ANOVA applied to each cell indicated
that the distinct sources of variation have different
contributions to the geographically-structured variation
around the consensus solution observed in Fig. 2A. Out
of the main effects, SDM explained a high proportion of
the total sum of squares with a median value of 66%,
ranging from 4 up to 95% (Table 1). High proportions of
the total sum of squares that can be attributable to this
factor were found in all North America and in the Amazon
(Fig. 3A).

There is a high correlation (r�0.88) between the
Moran’s I coefficients in the first distance class and the
median proportion of variation accounted for by each
source of uncertainty (Table 1). Thus, factors accounting
for most of the variability among the forecasts are also the

Figure 2. Consensus patterns of species turnover (A) and
coefficients of variation, in percentage, among the 70 turnover
maps (B) based on 3837 species of New World birds.
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ones with the strongest spatial patterns. For instance, the
variance component associated to SDM (the main source of
variation according to the decomposition of the total sum
of squares) is structured at broad geographical scales, with a
large Moran’s I in the first distance class and positive
coefficients extending up to ca 4000 km (Table 1).

On the other hand, although AOGCM did not have a
very high median value (Table 1), the proportion of the
total sum of squares attributable to this source can be as
high as 47% in most of South America, as well as in Central

America (Fig. 3B). Geographical patterns expressed in the
correlograms are also relatively strong (Moran’s I in the first
distance class equal to 0.399) and positive autocorrelation
can be found up to 3000 km (Table 1).

Among the interactions, the most important was the one
between SDM and the AOGCM, with proportions ranging
from 1.3 to 40.9%, with a median of 11.8% (Table 1). The
highest values for this interaction were found in central
North America and in the dry regions of eastern part of
South America (Fig. 3C). This variance component has

Figure 3. Proportion of the total sum of squares accounted for by SDM (A), AOGCM (B) and the interaction between these factors (C).

Figure 4. Loadings of the first principal component extracted from a matrix of species turnover forecasted by different methods for niche
modeling, AOGCMs and emission scenarios.
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spatial autocorrelation only at the smallest distance classes,
with positive Moran’s I (0.259) in the first distance class (up
to 640 km) (Table 1).

The proportion of the total sum of squares revealed wide
differences in species turnover patterns derived from
distinct SDM and AOGCMs, and these components are
geographically structured. These differences in maps can
now be analyzed in more detail by examining the loadings
of the first principal component. This analysis works here as
a multivariate version of ‘‘a posteriori’’ comparisons in
ANOVA (Sokal and Rohlf 1995), expressing the relative
importance of each vector of prediction to the consensus
map (Fig. 4). According to the loadings of the first principal
component, the main difference among methods can be
seen between a cluster of RF and MAXENT (with higher
loadings in PC1) against Euclidean and GARP (with lowest
loadings, but with high variation), with BIOCLIM,
MAHAL and GLM occupying an intermediate position.
All methods, except for RF and MAXENT, produce
different results when using different AOGCMs, which
explains the interaction term and makes it more difficult to
interpret the effects of AOGCM alone (methods for
modeling approaches, because of their larger effects, are
easier to interpret).

Discussion

Partitioning uncertainties

Our study provides an illustration of how variation in
ensembles of forecasts can be partitioned, thus offering a
tool for investigating the origins of the uncertainties
entering the models. Even if we accept that ensemble
forecasts generate more accurate (Araújo et al. 2005a), or at
least more conservative projections (Marmion et al. 2009),
it is still important to identify the main sources of variation
that affect the averaged projections (Brook et al. 2009, Elith
and Graham 2009).

Previous studies (Thuiller 2004, Araújo et al. 2005a,
2006) used principal component analysis, or other classi-
fication analyses, as exploratory tools to describe the relative
similarity among maps produced using different SDM or
AOGCMs, allowing then a qualitative assessment of the
relative importance of uncertainty sources. However, when
several sources of uncertainty are explored, variability
among projections might display complex patterns that
might be difficult to interpret with the visual inspection of
PCA loadings. Furthermore, formal quantitative assess-
ments of uncertainty are necessary if they are to be
systematically addressed and conveyed to model users.

Dormann et al. (2008) pioneered the use of ANOVA
designs to uncouple uncertainties in SDM. They showed
that the variability among statistics used to evaluate models
projections of great grey shrike’s distributions was, on
average, 60% attributable to the use of distinct SDM. Our
approach differs from Dormann et al. (2008) in that we
quantify variance in the projected distribution maps rather
than in the model fit statistics, which have more complex
properties and are difficult to interpret in the context of
model ‘‘transferability’’ (i.e. projecting the results of SDM
in a different region or time; Araújo et al. 2005b, Araújo

and Rahbek 2006, Randin et al. 2006). A manuscript
recently accepted for publication in Global Change Biology
and kindly supplied by one of the authors (Buisson et al.
2009) proposed an alternative approach to partition the
variance in ensemble-based forecasts of species turnover that
also allows an exploration of the geographic components of
uncertainty, as performed here. However, Buisson et al.
(2009) used a GLM to evaluate only the main sources of
uncertainty, but they did not explore the interactions
between SDM and AOGCMs, and indeed our results
showed that differences among SDMs are not the same
when their projections are based on different AOGCMs
(Fig. 4).

It is important to notice that the relative importance of
each source of uncertainty depends of the variation among
the levels within each factor. For all factors analyzed here,
we tried to maximize the variation among levels by selecting
SDM, AOGCMs, emission scenarios and data (species)
with different characteristics. For example, the PCA reveals
that differences among forecasts derived from different
SDM are in line with current knowledge on how these
methods work and how they are classified (Elith and
Graham 2009). It is understood that SDM tend to differ
in model fit, but it is less clear what is the link between fit
and ‘‘transferibility’’ of the models (see below). So, if one
uses sophisticated methods such as MAXENT and RF (i.e.
assuming that a good fit indicates high transferability � see
below), the relative importance of SDM may be reduced
(Buisson et al. 2009). Indeed, if only these two methods are
used, the median proportion of variation accounted by
SDM falls from 66.1 to only 4.2% (whereas the median
proportion accounted by AOGCM increases from 13.8 to
53%). Clearly, discussions around the relatively magnitude
of these sources of uncertainty (Thomas et al. 2004b,
Thuiller et al. 2004) must take into account which amount
of variation within a factor the levels used (different SDM
or AOGCM) cover in a comparative analysis.

Our results based on the turnover of New World birds
clearly showed that the choice of the SDM contributed the
most to uncertainty in the range of predictions, when
compared with AOGCM and emission scenarios. These
results are in line with previous studies showing that
different niche modeling approaches may produce markedly
different predictions of species range changes under climate
change (Thuiller et al. 2004, Araújo et al. 2005a, b, 2006,
Araújo and Rahbek 2006, Pearson et al. 2006). Our
approach further revealed that the AOGCM would con-
tribute with more uncertainty than the emission scenarios,
and its interaction with SDM could be as important as the
effects of AOGCM alone.

The discrepancy among the results obtained with
different SDM has certainly motivated a large body of
literature on comparison of methods that tries to find the
‘‘best’’ predictions (Manel et al. 1999, Thuiller 2003,
Brotons et al. 2004, Segurado and Araújo 2004, Elith et al.
2006, Lawler et al. 2006, Meynard and Quinn 2007,
Peterson et al. 2007, Tsoar et al. 2007) and discusses how to
evaluate modeling approaches, both in terms of model fit
(Fielding and Bell 1997, Liu et al. 2005, Lobo et al. 2008,
Peterson et al. 2008) and model transferability (Araújo et al.
2005b, Randin et al. 2006, Peterson et al. 2007, Fitzpatrick
et al. 2008, Peterson and Nakazawa 2008, Phillips 2008).
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It is important to highlight that, in most cases, fit-statistics
provide measures of the adjustment of projections to the
data used for calibration, but in other cases, fit statistics
measure how well model projections fit data sets apart for
evaluation. The problem is the lack of independence as
evaluation data are frequently spatially and/or temporally
autocorrelated with the data used for calibration. Therefore,
fit statistics provide an inflated and sometimes spurious
measure of the models’ suitability to be transferred into
independent settings (Araújo et al. 2005b, Araújo and
Rahbek 2006, Randin et al. 2006, Peterson et al. 2008).

In addition to such statistical considerations on model fit
and transferability, there is also a discussion about the
components of the niche that are captured by each model
(Araújo and Guisan 2006, Soberón 2007, Jiménez-Valverde
et al. 2008), as well as the relative roles of multiple
ecological and evolutionary processes driving current
species’ ranges in deterministic and stochastic ways and
how they can be incorporated into the methods (Araújo and
Luoto 2007, De Marco et al. 2008, Rickebusch et al. 2008,
Anderson et al. 2009).

Thus, supposing that further studies on all these issues
will be able to discard some of the SDMs or AOGCMs
(considering the criteria of model fit and transferability, or
unreliable AOGCMs), we can expect that the uncertainties
around the ensemble-based forecasts would be reduced. In a
very optimistic (and most unlikely) scenario, if researchers
found a definitive solution about which SDM should be
selected (the main source of variation according to our
results), then the level of uncertainty could be drastically
reduced.

Mapping uncertainties

In addition to allowing a quantitative evaluation of the
relative importance of different sources of variation around
a consensus solution discussed above, our approach also
allows mapping the variance components. This can be
important because it adds another dimension (geography)
to evaluate the uncertainties, giving more information on
where the consensus can be achieved with low variation and
where more research is needed to minimize variance.

In principle, four independent combinations of the two
characteristics of the variance component maps, their
geographic structure and their magnitude, could be found,
forming a ‘‘two-by-two’’ scheme. Finding which of these
combinations exist for a particular analysis possesses some
interesting implications for practical decisions regarding
forecasting. The first combination is given by a high level of
variability which is also geographically-structured. In this
case, uncertainty is not spatially random, which can shed
light to the problems in each factor generating uncertainty.
For example, AOGCMs can give different predictions in
regions with a particular environmental characteristic,
whereas all methods for SDM can provide similar solutions
in a given region and differ in others (Beaumont et al.
2007). These geographically-structured components also
show that when analyzing a given region more emphasis can
be given in a particular source of uncertainty. Although
short-distance spatial autocorrelation in the variance com-
ponents is inevitable, because of autocorrelation in climate

and distributional data, broad-scale patterns may indicate
more complex patterns that require ecological or methodo-
logical interpretations.

The second combination can be given by a high, but
geographically random variance component. This is the
most challenging combination because it will be hard to
predict regions of high or low uncertainty or establish which
levels within a factor (i.e. SDM) can be used alone without
increasing uncertainty. In this case, the differences among
models cannot be associated with geographically-structured
factors (e.g. environmental characteristics), so that it is more
difficult to understand variation among projections. Under
this combination, the use of ensemble-based forecasts is
probably the best analytical strategies for forecasting.

The third combination, a geographic structure in a
variance component with low mean, is unlikely to appear in
real data. If the effect is small, there is also small variation
among cells and it is unlike that any spatial pattern appears.
Finally, the forth combination, given by low variability
among results within cells which is also geographically
random, indicates that the source of uncertainty is not
important at all.

For the New World birds, we found a correlation
between geographic structure and the relative proportion of
variation accounted for by each source of uncertainty,
reinforcing that the two characteristics of the variance
component maps (i.e. magnitude and spatial pattern of the
component) are not independent, so that the second and
third combinations described above are not found.

The map of coefficient of variation in turnover shows
that most differences among ensemble-based projections
were found in the northern temperate region of the New
World, and in the Amazon. A visual inspection of the
maps averaged across SDM and AOGCMs further
revealed why these differences arise (see also Supplemen-
tary material Fig. S2, Fig. S3). For example, some
methods, such as RF, MAXENT, EUC and GLM, did
not predict high turnovers in central Amazon (although
this still depends on AOGCMs for some methods), which
explains why the variance component of niche modeling
techniques in this region is much higher (up to 90%) than
for other regions of the New World (Fig. 3A). In general,
MAXENT, RF and GLM predict smaller turnover across
the continent than other methods, and the other methods
vary a lot in their prediction of turnover in the northern
part of the continent. Indeed, Fig. 3 suggest that if
predictions of turnover rates are to be made for a few
regions in the New World, such as the southeastern coast
of Brazil, methods for niche modeling tend to give similar
results and their differences are of minor concern. On the
other hand, if one is interested in predictions for northern
hemisphere of the New World or Amazon, especially
northern US and Canada, AOGCMs are not an important
source of uncertainty (so any one could be used) and one
should focus on why methods are giving different answers.
These patterns can also have implications for conservation
decisions and it is important to notice, for example, that
regions with higher SDM uncertainty are also those with
high turnover levels detected by Lawler et al. (2009), based
on random forest.
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Concluding remarks

Our analyses support previous findings that SDM is the
main source of uncertainty in forecasts of species range
shifts under climate change and clearly highlights the
importance of ensemble forecasting because of the current
difficulties in the statistical evaluating model fit and
transferability. This conclusion does not oppose the view
that reductions of uncertainty in ensembles forecasts still
demand a better evaluation of the individual SDM that
compose the ensembles. Although the effects of SDM,
AOGCMs and emission scenarios have been continuously
evaluated in the literature, our approach provides a
quantitative evaluation of the magnitude and geographical
structure of these sources of uncertainty. Also, it can be
easily expanded to encompass more complex designs
addressing a larger spectrum of sources of variation in
ensemble forecasting. Moreover, mapping uncertainty
brings a new avenue for research, as it reveals that even
when a given study compares sources of uncertainty they are
not necessarily the same across different parts of the globe.
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Araújo, M. B. et al. 2006. Climate warming and the decline of
amphibians and reptiles in Europe. � J. Biogeogr. 33: 1712�
1728.
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