The occurrence of Apicomplexan parasites in Podarcis wall lizards from the Iberian Peninsula and Balearic islands was studied by amplification and sequencing of the 18S rRNA gene. Species from three genera, Hepatozoon, Sarcocystis and Eimeria were detected. The phylogenetic analysis of the 18S rRNA gene provides unexpected insights into the evolutionary history of these parasites. All Hepatozoon specimens were recovered as part of a clade already identified in lizards from North Africa. The Sarcocystis species, detected in Podarcis lilfordi from Cabrera island, in the Balearic Islands, appears related to Sarcocystis gallotiae, known only from endemic Gallotia lizards from the Canary Islands. Based on the lack of snake predators on this island, this parasite form presumably presents an atypical transmission cycle that uses the same host species as both intermediate and final host through cannibalism, like S. gallotiae. Eimeria is reported for the first time from Podarcis lizards. This study shows the power of detecting multiple different Apicomplexa parasites through screening of tail tissue samples and blood drops that are often collected in reptiles for other purposes.
MOLECULAR SURVEY OF APICOMPLEXA IN *PODARCIS* WALL LIZARDS DETECTS *HEPATOZOOON*, *SARCOCYSTIS* AND *EIMERIA* SPECIES

D. James Harris, João P. M. C. Maia*, and Ana Perera

CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Campus Agrário de Vairão, 4485-661 Vairão, Portugal. e-mail: james@mail.icav.up.pt

ABSTRACT: The occurrence of apicomplexan parasites in *Podarcis* sp. wall lizards from the Iberian Peninsula and Balearic islands was studied by amplification and sequencing of the 18S rRNA gene. Species from 3 genera, *Hepatozoon*, *Sarcocystis*, and *Eimeria*, were found. The phylogenetic analysis of the 18S rRNA gene provides unexpected insights into the evolutionary history of these parasites. All *Hepatozoon* spp. specimens were recovered as part of a clade already identified in lizards from North Africa. The *Sarcocystis* species, detected in *Podarcis lilfordi* from Cabrera Island in the Balearic Islands, appears related to *Sarcocystis gallotiae*, known only from endemic *Gallotia* sp. lizards from the Canary Islands. Based on the lack of snake predators on this island, this parasite presumably presents an atypical transmission cycle that uses the same host species as both intermediate and final host through cannibalism, like *S. gallotiae*. *Eimeria* sp. is reported for the first time from *Podarcis* spp. lizards. This study shows the power of detecting multiple different apicomplexan parasites through screening of tail tissue samples and blood drops that are often collected in reptiles for other purposes.

The Apicomplexa includes a diverse group of unicellular parasites that is possibly the poorest studied group of all animals in terms of biodiversity (Morrison, 2009). Yet, according to the European Cooperation in Science and Technology (COST), apicomplexan protozoa caused more human deaths than any other group of infectious agents and are also the most significant parasites of livestock. Although molecular techniques have now become
established as standard tools for monitoring parasite populations (Beck et al., 2009), this is heavily biased to certain groups within Apicomplexa, such as *Plasmodium* spp., and is also directed primarily towards humans or commercially important animal groups. However, parasites also have dual interests for conservation biologists. On the one hand, parasite-driven declines in wildlife are becoming common (Pedersen et al., 2007), while on the other hand, parasites themselves are also a major component of biodiversity (Poulin and Morand, 2004). Due to their obligate relationship with a host, parasites are especially at risk through co-extinction, where the loss of 1 species leads to the loss of another, so that an extinction cascade can occur. Models suggest that co-extinction may be very common (Dunn, 2009), but lack of knowledge hinders assessments.

Reptiles are hosts to a wide variety of apicomplexan parasites, including families with human medical importance such as Sarcocystidae (which includes *Toxoplasma*), Eimeriidae, e.g., *Cryptosporidium parvum*, and Haemosporidae, e.g., *Plasmodium* spp. The most common and widely distributed apicomplexans found in reptiles are species of *Hepatozoon* (Telford, 2009). Traditionally, assessment of gametocyte morphology in the vertebrate host and sporogonic stages in the invertebrate host was used for diagnosis and species description. This situation is complicated, however, when only information from the vertebrate host is available, which is often the case. Fortunately, for *Hepatozoon* species, universal primers are available that can amplify part of the 18S rRNA gene. These have been used to assess prevalence, estimate phylogenies, and confirm distinctiveness in a variety of vertebrate hosts, including mammals (Merino et al., 2009) and reptiles (Harris et al., 2011; Maia et al., 2011). However, although for mammals there is a wide knowledge regarding other apicomplexan groups, much less information is available for reptiles. *Eimeria* species, for example, cause coccidiosis and are the most important protozoan pathogens of poultry (Beck et al., 2009). Not surprisingly, there is considerable molecular data available for both domestic (Barta et al.,
1997; Miska et al., 2010) and wild (Honma et al., 2007) birds, but only a single 18S rRNA sequence is available from a species that infects reptiles, i.e., *Eimeria arnyi* (Upton and Oppert, 1991). Similarly, Sarcosporidia are prevalent around the world, affecting amniotic vertebrates, including humans. Species of *Sarcocystis* have a diheteroxenous cycle and, for most described species, mammals and reptiles are both intermediate and final hosts. However, some insular species such as *Sarcocystis gallotiae* or *S. dugesii* that infect lizards endemic to the Canary and Madeira Islands, respectively, are atypical since the same lizard species is both intermediate and final host, which occurs via cannibalism (Matuschka and Bannert, 1987; Matuschka, 1988). Various other species have a snake-lizard life cycle (reviewed in Matuschka, 1987). Again, however, despite a wide variety of species from mammals and birds having been sequenced for the 18S rRNA gene, often to confirm the distinctiveness of new species (Xiang et al., 2010; Kutkiene et al., 2010, 2011), only a couple of studies have included such data from reptile species (Slapeta et al., 2001, 2003).

The aim of the present study was to screen populations of *Podarcis* spp. wall lizards (Lacertidae) from the Iberian Peninsula and the Balearic Islands for apicomplexan parasites using 18S rRNA primers. Several *Podarcis* spp. from the Iberian Peninsula have been shown to have high levels of infection with hemogregarines using traditional blood smears (Álvarez-Calvo, 1975; Amo et al., 2005; Roca and Galdón, 2010), and 18S rRNA primers are known to amplify *Hepatozoon* spp. from lacertids in North Africa, including *Podarcis vaucheri* (Maia et al., 2011). At the same time, these lizards were assessed using autotomized tail samples that are typically used in phylogeographic studies of the host (Pinho et al., 2011). *Sarcocystis* spp. have been reported to infect several species of *Podarcis*, including *Podarcis lilfordi* endemic to the eastern Balearic Islands (Mayo et al., 1988) and classified as endangered on the IUCN red list (Pérez-Mellado and Martínez-Solano, 2009) among others (see a complete review in Odening, 1998). Since sarcocysts are typically observed in tail muscle in lizards (Abdel-
Ghaffar et al., 2009), there is also a reasonable possibility that these will be detected by molecular methods. Additionally, a possible amplification of an apparent member of the Eimeriidae was reported using these primers within reptiles from the Seychelles (Harris et al., 2011), and thus the possibility exists of detecting these, or even other, apicomplexan parasites. In the present study, we use molecular methods to assess the existence of different apicomplexan species using 18S rRNA primers. Positive samples were sequenced and included in a phylogenetic assessment using previously published sequences to help determine the evolutionary history and patterns of genetic diversity within these parasite species.

MATERIALS AND METHODS

Sample collection

Samples from lizard specimens were collected from 2 localities in the Iberian Peninsula (April 2008 in Beja, Portugal, and June 2009 in Alba de Tormes, Spain) and from Cabrera island, Balearic Islands (September 2010). Tail tips from the lizards were preserved in 96% ethanol for molecular analysis and blood drops were placed in Whatman paper. When lizards autotomize their tails, very little blood is typically lost and, in most cases, there was not enough to make blood slides. After samples were collected, the lizards were released at the site of capture. A total of 44 tissue samples was collected, i.e., 10 from Cabrera (Podarcis lilfordi), and 34 from the 2 localities on the Iberian Peninsula (Podarcis hispanica) (see Table I).

DNA extraction, amplification, and sequencing

DNA was extracted from tissue and blood drops using standard High Salt methods (Sambrook et al., 1989). Detection of parasites was made using PCR reactions with the primers HEMO1 and HEMO2 (Perkins and Keller, 2001) targeting part of the 18S rRNA region, and using the primers HepF300 and HepR900 (Ujvari et al., 2004), targeting another
partially overlapping part of the 18S rRNA region. Conditions of the PCR are detailed in Harris et al. (2011). Briefly, PCR cycling for the HEMO primers consisted of 94°C 30 sec, 48°C 30 sec, 72°C 1 min (35 cycles), while for the Hep primers annealing temperature was 61°C. Negative and positive controls were run with each reaction. The positive PCR products were purified and sequenced by a commercial sequencing service (Macrogen Inc., Seoul, Korea). All sequences were performed in both directions. Sequences were deposited in GenBank under the accession numbers *** to *** (to be added after final acceptance).

Phylogenetic analysis

Due to the considerable genetic differences between the parasites detected, and since different parasites were detected with the alternative primer pairs (see results), separate phylogenetic analyses were performed for each of the parasite groups recovered. For each dataset new sequences generated in this study were aligned with related sequences retrieved from GenBank. All sequences for which the full length was available were included in the analyses, except for cases in which many closely related sequences are available for some taxa, e.g., *Eimeria reichenowi*. In these cases, single exemplars were arbitrarily used. Sequences were aligned using ClustalW software implemented in the program BioEdit (Hall, 1999). The final 3 datasets contained 47, 21, and 12 taxa that were 798, 609, and 636 bp in length, respectively.

Maximum Likelihood (ML) analysis with random sequence addition (100 replicate heuristic searches) was used to estimate their evolutionary relationships using the software PAUP (Swofford, 2002). Support for nodes was estimated using the bootstrap technique (Felsenstein, 1985) with 1,000 replicates. The model of evolution employed, in all cases GTR with an estimate of invariant sites and a gamma distribution of site variation, was chosen using the AIC criteria carried out in Modeltest 3.06 (Posada and Crandall, 1998). Bayesian analysis was implemented using Mr. Bayes v.3.2 (Huelsenbeck and Ronquist, 2001) with
parameters estimated as part of the analysis. The analysis was run for \(1 \times 10^7 \) generations, saving 1 tree every 1,000 generations. The log-likelihood values of the sample point were plotted against the generation time and all the trees prior to reaching stationary were discarded as burn-in samples. Remaining trees were combined in a 50% majority consensus tree.

Following Maia et al. (2011) and Morrison (2009), Adelina bambarooniae was used as an outgroup for rooting the phylogenetic tree for the Hepatozoon spp. sequences. Following Slapeta et al. (2003), species of Besnoitia and Hylokossa were used to root the estimate of relationships of the Sarcocystis spp., while, following Jirku et al. (2009), Choleoeimera sp. and Eimeria tropidura were used to root the estimate of relationships of the Eimeria spp. dataset.

RESULTS

Of the 44 individuals analyzed, 24 were found to be infected with Hepatozoon sp. parasites, using the HEMO primers. This included infections in Podarcis hispanica (0% in Portugal and 89.5% in Spain) and Podarcis lilfordii (70% in Cabrera) (Table I). Two individuals negative for the HEMO primers were found to be infected with Hepatozoon sp. using the HEP primers. Both phylogenetic methodologies produced the same estimate of relationships among the Hepatozoon sp. sequences of the 18S rRNA gene (Fig. 1). All of the Hepatozoon sp. lineages identified in Podarcis spp. from the Iberian Peninsula and the Balearics formed part of a group composed of 1 of the major clades in North Africa, detected in various lacertids (species of Timon, Podarcis and Scelarcis) and skinks (species of Eumeces and Chalcides), and a clade of mammalian Hepatozoon sp. isolates (Fig. 1).

Within P. lilfordii, several individuals (80%) were found to be infected with Sarcocystis sp. using the HEP primers, although no infection was reported in the other 2 localities analyzed (Table I). Some of these (5) were also infected with Hepatozoon sp. parasites, but there was no obvious double amplification, i.e., with the HEMO primers only Hepatozoon sp. was
amplified, and with the HEP only *Sarcocystis* sp. were amplified. The sequences amplified
group with the ones available in GenBank for other lacertid species (Fig. 2). Interestingly, the
Sarcocystis sp. from *P. lilfordi* was most closely related to *S. gallotiae* from *Gallotia* sp.
lizards, rather than *S. lacertae* that infects *P. muralis* (Fig. 2).

Also using the HEP primers, a single individual of *P. hispanica* from Portugal was found to
be infected with *Eimeria* sp. (Table I). Although there is limited available comparative data
for *Eimeria* spp. from reptiles, the sequence was determined to be most closely related to *E.
arnyi* from a snake, and then to *E. ranae* from a frog (Fig. 3). To our knowledge, this is the
first report of *Eimeria* sp. infection in *Podarcis* sp. lizards.

Thus, in this study HEP primers amplified *Hepatozoon, Sarcocystis* and *Eimeria* species,
while HEMO primers only amplified *Hepatozoon* sp. In dual infected *P. lilfordi*, HEP primers
preferentially amplified *Sarcocystis* sp., while HEMO amplified *Hepatozoon* sp.

DISCUSSION

For the first time, *Hepatozoon* sp. from *Podarcis* spp. from the Iberian Peninsula and the
Balearic Islands can be placed in a phylogenetic framework. Despite the shorter sequences
used in this study (about 800 bp), the overall estimate of phylogeny is essentially the same as
that found by Maia et al. (2011), using about 1400 bp, although with lower levels of statistical
support. All the newly sequenced parasites form part of a group that includes a variety of
lacertids and skinks from North Africa (Maia et al., 2011). The 4 *Hepatozoon* spp. haplotypes
recovered in this study do not form a clade, but are instead related to various haplotypes from
North Africa and to mammalian isolates. Although this increases the known geographic
distribution of this group, and the number of known host species, the inclusion of new data
has little influence on the overall phylogeny of *Hepatozoon* spp. This lineage, previously
known only from reptiles, appears to be related to a lineage that includes *H. canis, H.
americanum*, and *H. felis*, which usually use carnivores, including cats and dogs, as their
intermediate hosts. The present study also confirms that closely related *Hepatozoon* spp. haplotypes can be found in unrelated hosts, i.e., in this case, species of *Chalcides*, *Eumeces*, *Atlantolacerta*, *Scelarcis*, and *Timon*, and at least 3 *Podarcis* species. Clearly, there is a difference in specificity between the pairs of primers used, with Hep primers amplifying samples that failed to amplify with the partially overlapping HEMO primers. The Hep primers are less specific, also amplifying other apicomplexans. It is, therefore, inappropriate to directly compare prevalence across studies using these different markers.

Mayo et al. (1988) first reported *Sarcocystis dugesii* from *P. lilfordi* on Cabrera Island. Until then, *S. dugesii* had been only known from the Madeiran endemic lacertid *Teira dugesii* (Matuschka and Mehlhorn, 1984), and later reviews report only a form "similar to *S. dugesii*" in *P. lilfordi* (Odening, 1998). Given that *Sarcocystis* spp. show some signs of co-evolution with their snake hosts (Slapeta et al., 2003), it could be expected that the form in *P. lilfordi* would be more similar to *Sarcocystis lacertae*, known from *Podarcis muralis*. However, in our estimate of relationships, *Sarcocystis* spp. from *P. lilfordi* are clearly more closely related to *S. gallotiae* from *Gallotia* spp. lizards endemic to the Canary Islands. *Sarcocystis gallotiae* and *S. dugesii* are notable because they use the same lizards as both intermediate and final host, a life cycle described as dihomoxenous (Matuschka, 1988), whereas *Sarcocystis lacertae* has a more typical snake (*Coronella austriaca*)-lizard (*P. muralis*) life cycle (Volf et al., 1999). Given that there are no snake or mammalian predators on Cabrera Island, the *Sarcocystis* sp. found in *P. lilfordi* is likely to similarly use the lizard as both intermediate and final host. Indeed, cannibalism is in general more common in island lizards where resources are limited (Pafilis et al., 2009). Although these are the only species known to have always the same intermediate and final host, 2 other species, *Sarcocystis rodentifelis* and *S. muris*, can occasionally exhibit transmission from an intermediate host to a paratenic host through cannibalism (Slapeta et al., 2001). In a concatenated analysis of large and small subunit rRNA
genes, Slapeta et al. (2003) found these 2 species to be sister taxa, and related to a lineage of
S. lacertae and *S. gallotiae*, although in our analysis the phylogenetic position of *S.*
rodentifelis is not well supported. The finding of another dihomoxenous form related to *S.*
gallotiae raises important evolutionary questions. First, it implies that dihomoxeny may have
arisen just once as a facultative strategy that became fixed in island host species that had no
alternative predator to fill the niche of final host. This would mean that a reversal to a
diheteroxenous life cycle occurred in *S. lacertae*. Alternatively, dihomoxeny could have arisen
twice, once in the lineage leading to *S. muris* and *S. rodentifelis*, and again in the lineage
leading to *S. gallotiae* and the form found in *P. lilfordi*. Second, the relationship of a parasite
lineage found in 2 geographically separated island-endemic hosts implies that the lineage is
probably old. *Gallotia* spp. separated from other ancestral lacertids when it colonized the
Canary Islands perhaps 17 to 20 MYA (Cox et al., 2010). Similarly, *P. lilfordi* has been
separated since the time of the Messinian Salinity Crisis, approximately 5.3 MYA (Brown et
al., 2008). To fully address both these questions relating to the origins of dihomoxeny and its
age, other closely related (and possibly conspecific) *Sarcocystis* species need to be included in
the phylogenetic framework, in particular *S. dugesii* from *T. dugesii* in Madeira and
Sarcocystis podarcicolubris, another *Sarcocystis* species known from *Podarcis* spp. that has a
diheteroxenous life cycle (Matuschka, 1985).

A single specimen of *P. hispanica* from Portugal was shown to be infected with *Eimeria* sp.
using the HEP primers. This is again relevant for various reasons. First, it is, to our
knowledge, the first report of *Eimeria* sp. from *Podarcis* sp. There is an old record of *Eimeria*
sp. in another lizard that occurs in the Iberian Peninsula, *Zootoca vivipara* (formerly *Lacerta
vivipara*) from 1935 (Yakimoff and Gousseff, 1935). Additionally, there are a few reports of
Eimeria sp. in lacertids from North Africa (*Acanthodactylus* sp.; Sakran et al., 1994; Al Yousif
et al., 1997), Asia (*Eremias* sp. and *Takydromus* sp. [Davronov, 1985; Telford, 1992,
respectively], and from the Canary Islands (Gallotia sp. [Matuschka and Bannert, 1987]).

Second, there were previously almost no molecular data regarding Eimeria sp. from amphibians and reptiles, with only a couple of sequences previously published (Slapeta et al., 2001, 2003).

The estimate of relationships presented here (Fig. 3) indicates that the species of Eimeria from Podarcis spp. is most closely related to E. arnyi, the only other analyzed specimen from a reptile host. In our analysis, Eimeria spp. from poikilothermic hosts form a monophyletic group, while those from endothermic hosts are paraphyletic since the clade that includes E. gruis and E. reichenowi, both from cranes, is basal to all ingroup taxa, although these relationships are only weakly supported. This differs from the estimate of relationship of Jirku et al. (2009), who found that the Eimeria spp. from endothermic hosts formed a monophyletic group. Jirku et al. (2009) unfortunately did not include any members of the E. gruis/E. reichenowi clade. Although Honma et al. (2007) also found the clade of E. gruis and E. reichenowi as sister taxa to the remaining eimeriid coccidian with Stieda bodies, in this assessment no Eimeria sp. from poikilothermic hosts was included. Clearly, additional data regarding all available taxa will be needed to resolve this aspect of eimeriid relationships.

Finally, this is also an atypical example of Eimeria sp. detection, i.e., fecal material is almost always used to amplify and sequence the DNA of these parasites (Motriuk-Smith et al., 2009; Power et al., 2009). Since they autotomize naturally and typically regenerate, tail samples are widely available in museum collections and stored in ethanol for genetic analyses of the lizards. The present study shows that not only Hepatozoon and Sarcocystis species can be detected from these tissues, but also Eimeria spp. In the present study, both blood and tissue samples could be used to detect parasites. However, it is not yet clear if 1 source of DNA will allow more accurate detection of parasites at low levels of parasitemia. This is something that warrants further investigation.
Although molecular techniques are now standard tools for monitoring parasite populations in humans and domestic animals, their use in wild animal populations has until recently been limited. However, determining parasite distribution is crucial for conservation biologists, especially in species whose existence are under challenge. The survey performed on *Podarcis* spp. indicates that various apicomplexan parasites can be detected using tail tissue samples that are often collected for other purposes. At the same time, by sequencing the 18S rRNA gene, new insights into the evolutionary history of the parasites can be obtained. Depending on the primers used, different apicomplexans will be detected, i.e., the cases of dual infection with species of *Hepatozoon* and *Sarcocystis* in *P. lilfordi* clearly highlight this point. There is a need, therefore, for further assessments of possible parasites using additional molecular markers so that a clearer picture of the spectrum of parasites infecting these species can be obtained.

ACKNOWLEDGMENTS

This project was supported by a grant from FCT to DJH (PTDC/BIA-BDE/74349/2006). AP is supported by a FCT postdoctoral fellowship (SFRH/BPD/26546/2006), and JPMCM by a FCT PhD grant (SFRH/BD/74305/2010). Thanks to our colleagues from CIBIO who helped with the fieldwork, and to the people and entities that made it possible to obtain samples and permits in Spain and Portugal. Thanks also to the anonymous reviewers and the Associate Editor, Dr. Susan Perkins, for their helpful comments on an earlier draft of this manuscript.

LITERATURE CITED

Cuadernos de Ciencias Biológicas 4: 207-222.

BECK, H. P., D. BLAKE, M. L. DARDE, I. FELGER, S. PEDRAZA-DIAZ, J. REGIDOR-CERRILLO, M.

BROWN, R. P., B. TERRASA, V. PÉREZ-MELLADO, J. A. CASTRO, P. A. HOSKISSON, A.

The sixth mass coextinction: Are most endangered species parasites and mutualists? Proceedings of the Royal Society Biological Sciences **276**: 3037-3045.

KUTKIELENE, L., P. PRAKAS, A. SROGA, AND D. BUTUKASKAS. 2010. The mallard duck (*Anas platyrhynchos*) as intermediate host for *Sarcocystis wobeseri* sp. nov. from the barnacle goose (*Branta leucopsis*). *Parasitology Research* **107**: 879-888.

ROCA, V., AND M. A. GALDÓN. 2010. Haemogregarine blood parasites in the lizards *Podarcis bocagei* (Seoane) and *P. carbonelli* (Pérez-Mellado) (Sauria: Lacertidae) from NW Portugal. Systematic Parasitology 75: 75-79.

FIGURE 1. Tree derived from a Maximum Likelihood (ML) analysis of the Hepatozoon sp. sequences. New haplotypes from this study are in bold. For all other codes refer to Maia et al. (2011).

FIGURE 2. Tree derived from a Maximum Likelihood (ML) analysis of the Sarcocystis sp. sequences. Bootstrap values for ML are given above relevant nodes, and Bayesian Posterior Probability below them. When both values were 100%, this is indicated with a +. New haplotypes from this study are in bold.
FIGURE 3. Tree derived from a Maximum Likelihood (ML) analysis of the *Eimeria* sequences. Bootstrap values for ML are given above relevant nodes, and Bayesian Posterior Probability below them. When both values were 100%, this is indicated with a +. New haplotypes from this study are in bold.

*Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre FC4 4169-007 Porto, Portugal.
Figure 3

Click here to download Figure: Fig3-Eimeria.pdf

Poikilothermic hosts

Eimeriid coccidia with Stieda bodies

E. tropidura - AF324217

Choleoeimeria sp. - AY043207

E. sp. - 667PhPO

E. arnyi - AY613853

E. ranae - EU717219

E. pilarensis - AF324215

E. praecox - GQ421692

E. alabamensis - AF291427

Cyclospora colobi - AF111186

E. telekii - AF246717

E. gruis - AB243082

E. reichenowi - AB243084

0.01 substitutions/site
TABLE I. Summary of the 44 samples analyzed in this study, including positives for parasites and their geographical locations. Coordinates are in the WSG84 format. * Two samples were positive with only the HEP primers and therefore were not included in the analyses.

<table>
<thead>
<tr>
<th>Host species</th>
<th>Podarcis hispanica Portugal (Long 40.83º Lat -5.52º)</th>
<th>Podarcis hispanica Spain (Long 38.02º Lat -7.86º)</th>
<th>Podarcis lilfordi Cabrera (Long 39.15º Lat 2.93º)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hepatozoon</td>
<td>0</td>
<td>17* (89.5%)</td>
<td>7 (70%)</td>
<td>24</td>
</tr>
<tr>
<td>Sarcocystis</td>
<td>0</td>
<td>0</td>
<td>8 (80%)</td>
<td>8</td>
</tr>
<tr>
<td>Eimeria</td>
<td>1 (6.7%)</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>15</td>
<td>19</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>